Carl Franzen@AI News | VentureBeat
//
Mistral AI has launched its first reasoning model, Magistral, signaling a commitment to open-source AI development. The Magistral family features two models: Magistral Small, a 24-billion parameter model available with open weights under the Apache 2.0 license, and Magistral Medium, a proprietary model accessible through an API. This dual release strategy aims to cater to both enterprise clients seeking advanced reasoning capabilities and the broader AI community interested in open-source innovation.
Mistral's decision to release Magistral Small under the permissive Apache 2.0 license marks a significant return to its open-source roots. The license allows for the free use, modification, and distribution of the model's source code, even for commercial purposes. This empowers startups and established companies to build and deploy their own applications on top of Mistral’s latest reasoning architecture, without the burdens of licensing fees or vendor lock-in. The release serves as a powerful counter-narrative, reaffirming Mistral’s dedication to arming the open community with cutting-edge tools. Magistral Medium demonstrates competitive performance in the reasoning arena, according to internal benchmarks released by Mistral. The model was tested against its predecessor, Mistral-Medium 3, and models from Deepseek. Furthermore, Mistral's Agents API's Handoffs feature facilitates smart, multi-agent workflows, allowing different agents to collaborate on complex tasks. This enables modular and efficient problem-solving, as demonstrated in systems where agents collaborate to answer inflation-related questions. Recommended read:
References :
Carl Franzen@AI News | VentureBeat
//
Mistral AI has launched Magistral, its inaugural reasoning large language model (LLM), available in two distinct versions. Magistral Small, a 24 billion parameter model, is offered with open weights under the Apache 2.0 license, enabling developers to freely use, modify, and distribute the code for commercial or non-commercial purposes. This model can be run locally using tools like Ollama. The other version, Magistral Medium, is accessible exclusively via Mistral’s API and is tailored for enterprise clients, providing traceable reasoning capabilities crucial for compliance in highly regulated sectors such as legal, financial, healthcare, and government.
Mistral is positioning Magistral as a powerful tool for both professional and creative applications. The company highlights Magistral's ability to perform "transparent, multilingual reasoning," making it suitable for tasks involving complex calculations, programming logic, decision trees, and rule-based systems. Additionally, Mistral is promoting Magistral for creative writing, touting its capacity to generate coherent or, if desired, uniquely eccentric content. Users can experiment with Magistral Medium through the "Thinking" mode within Mistral's Le Chat platform, with options for "Pure Thinking" and a high-speed "10x speed" mode powered by Cerebras. Benchmark tests reveal that Magistral Medium is competitive in the reasoning arena. On the AIME-24 mathematics benchmark, the model achieved an impressive 73.6% accuracy, comparable to its predecessor, Mistral Medium 3, and outperforming Deepseek's models. Mistral's strategic release of Magistral Small under the Apache 2.0 license is seen as a reaffirmation of its commitment to open source principles. This move contrasts with the company's previous release of Medium 3 as a proprietary offering, which had raised concerns about a shift towards a more closed ecosystem. Recommended read:
References :
anket.sah@lambda.ai (Anket@lambdalabs.com
//
References:
lambda.ai
, thezvi.wordpress.com
,
DeepSeek's latest model, R1-0528, is now available on Lambda’s Inference API, marking an upgrade to the original R1 model released in January 2025. The new model, built upon the deepseek_v3 architecture, boasts a blend of mathematical capabilities, code generation finesse, and reasoning depth, aiming to challenge the dominance of OpenAI’s o3 and Google’s Gemini 2.5 Pro. DeepSeek-R1-0528 employs FP8 quantization, enhancing its ability to handle complex computations efficiently and features a mixture-of-experts (MoE) model with multi-headed latent attention (MLA) and multi-token prediction (MTP), enabling efficient handling of complex reasoning tasks.
DeepSeek-R1-0528, while a solid upgrade, didn't generate the same excitement as the initial R1 release. When R1 was released in January 2025, it was seen as a watershed moment for the company. This time around, it's considered a solid model for its price and status as an open model, and is best suited for tasks that align with its specific strengths. The initial DeepSeek release created a "DeepSeek moment", leading to market reactions and comparisons to other models. The first R1 model was released with a free app featuring a clear design and visible chain-of-thought, which forced other labs to follow suit. While DeepSeek R1-0528 offers advantages, experts warn of potential risks associated with open-source AI models. Cisco issued a report shortly after R1 began dominating headlines which claimed DeepSeek failed to block a single harmful prompt when tested against 50 random prompts taken from the HarmBench dataset. These risks include potential misuse for cyber threats, spread of misinformation, and reinforcement of biases. There are concerns regarding data poisoning, where compromised training data could lead to biased or disinformation. Furthermore, adversaries could modify the models to bypass controls, generate harmful content, or embed backdoors for exploitation. Recommended read:
References :
@www.marktechpost.com
//
DeepSeek, a Chinese AI startup, has launched an updated version of its R1 reasoning AI model, named DeepSeek-R1-0528. This new iteration brings the open-source model near parity with proprietary paid models like OpenAI’s o3 and Google’s Gemini 2.5 Pro in terms of reasoning capabilities. The model is released under the permissive MIT License, enabling commercial use and customization, marking a commitment to open-source AI development. The model's weights and documentation are available on Hugging Face, facilitating local deployment and API integration.
The DeepSeek-R1-0528 update introduces substantial enhancements in the model's ability to handle complex reasoning tasks across various domains, including mathematics, science, business, and programming. DeepSeek attributes these improvements to leveraging increased computational resources and applying algorithmic optimizations in post-training. Notably, the accuracy on the AIME 2025 test has surged from 70% to 87.5%, demonstrating deeper reasoning processes with an average of 23,000 tokens per question, compared to the previous version's 12,000 tokens. Alongside enhanced reasoning, the updated R1 model boasts a reduced hallucination rate, which contributes to more reliable and consistent output. Code generation performance has also seen a boost, positioning it as a strong contender in the open-source AI landscape. DeepSeek provides instructions on its GitHub repository for those interested in running the model locally and encourages community feedback and questions. The company aims to provide accessible AI solutions, underscored by the availability of a distilled version of R1-0528, DeepSeek-R1-0528-Qwen3-8B, designed for efficient single-GPU operation. Recommended read:
References :
@www.marktechpost.com
//
DeepSeek has released a major update to its R1 reasoning model, dubbed DeepSeek-R1-0528, marking a significant step forward in open-source AI. The update boasts enhanced performance in complex reasoning, mathematics, and coding, positioning it as a strong competitor to leading commercial models like OpenAI's o3 and Google's Gemini 2.5 Pro. The model's weights, training recipes, and comprehensive documentation are openly available under the MIT license, fostering transparency and community-driven innovation. This release allows researchers, developers, and businesses to access cutting-edge AI capabilities without the constraints of closed ecosystems or expensive subscriptions.
The DeepSeek-R1-0528 update brings several core improvements. The model's parameter count has increased from 671 billion to 685 billion, enabling it to process and store more intricate patterns. Enhanced chain-of-thought layers deepen the model's reasoning capabilities, making it more reliable in handling multi-step logic problems. Post-training optimizations have also been applied to reduce hallucinations and improve output stability. In practical terms, the update introduces JSON outputs, native function calling, and simplified system prompts, all designed to streamline real-world deployment and enhance the developer experience. Specifically, DeepSeek R1-0528 demonstrates a remarkable leap in mathematical reasoning. On the AIME 2025 test, its accuracy improved from 70% to an impressive 87.5%, rivaling OpenAI's o3. This improvement is attributed to "enhanced thinking depth," with the model now utilizing significantly more tokens per question, indicating more thorough and systematic logical analysis. The open-source nature of DeepSeek-R1-0528 empowers users to fine-tune and adapt the model to their specific needs, fostering further innovation and advancements within the AI community. Recommended read:
References :
|
BenchmarksBlogsResearch Tools |