@www.marktechpost.com
//
Google has unveiled a new AI model designed to forecast tropical cyclones with improved accuracy. Developed through a collaboration between Google Research and DeepMind, the model is accessible via a newly launched website called Weather Lab. The AI aims to predict both the path and intensity of cyclones days in advance, overcoming limitations present in traditional physics-based weather prediction models. Google claims its algorithm achieves "state-of-the-art accuracy" in forecasting cyclone track and intensity, as well as details like formation, size, and shape.
The AI model was trained using two extensive datasets: one describing the characteristics of nearly 5,000 cyclones from the past 45 years, and another containing millions of weather observations. Internal testing demonstrated the algorithm's ability to accurately predict the paths of recent cyclones, in some cases up to a week in advance. The model can generate 50 possible scenarios, extending forecast capabilities up to 15 days. This breakthrough has already seen adoption by the U.S. National Hurricane Center, which is now using these experimental AI predictions alongside traditional forecasting models in its operational workflow. Google's AI's ability to forecast up to 15 days in advance marks a significant improvement over current models, which typically provide 3-5 day forecasts. Google made the AI accessible through a new website called Weather Lab. The model is available alongside two years' worth of historical forecasts, as well as data from traditional physics-based weather prediction algorithms. According to Google, this could help weather agencies and emergency service experts better anticipate a cyclone’s path and intensity. Recommended read:
References :
Sana Hassan@MarkTechPost
//
References:
siliconangle.com
, Maginative
Google has recently unveiled significant advancements in artificial intelligence, showcasing its continued leadership in the tech sector. One notable development is an AI model designed for forecasting tropical cyclones. This model, developed through a collaboration between Google Research and DeepMind, is available via the newly launched Weather Lab website. It can predict the path and intensity of hurricanes up to 15 days in advance. The AI system learns from decades of historical storm data, reconstructing past weather conditions from millions of observations and utilizing a specialized database containing key information about storm tracks and intensity.
The tech giant's Weather Lab marks the first time the National Hurricane Center will use experimental AI predictions in its official forecasting workflow. The announcement comes at an opportune time, coinciding with forecasters predicting an above-average Atlantic hurricane season in 2025. This AI model can generate 50 different hurricane scenarios, offering a more comprehensive prediction range than current models, which typically provide forecasts for only 3-5 days. The AI has achieved a 1.5-day improvement in prediction accuracy, equivalent to about a decade's worth of traditional forecasting progress. Furthermore, Google is experiencing exponential growth in AI usage. Google DeepMind noted that Google's AI usage grew 50 times in one year, reaching 500 trillion tokens per month. Logan Kilpatrick from Google DeepMind discussed Google's transformation from a "sleeping giant" to an AI powerhouse, citing superior compute infrastructure, advanced models like Gemini 2.5 Pro, and a deep talent pool in AI research. Recommended read:
References :
@Google DeepMind Blog
//
Google DeepMind has introduced AlphaEvolve, a revolutionary AI coding agent designed to autonomously discover innovative algorithms and scientific solutions. This groundbreaking research, detailed in the paper "AlphaEvolve: A Coding Agent for Scientific and Algorithmic Discovery," represents a significant step towards achieving Artificial General Intelligence (AGI) and potentially even Artificial Superintelligence (ASI). AlphaEvolve distinguishes itself through its evolutionary approach, where it autonomously generates, evaluates, and refines code across generations, rather than relying on static fine-tuning or human-labeled datasets. AlphaEvolve combines Google’s Gemini Flash, Gemini Pro, and automated evaluation metrics.
AlphaEvolve operates using an evolutionary pipeline powered by large language models (LLMs). This pipeline doesn't just generate outputs—it mutates, evaluates, selects, and improves code across generations. The system begins with an initial program and iteratively refines it by introducing carefully structured changes. These changes take the form of LLM-generated diffs—code modifications suggested by a language model based on prior examples and explicit instructions. A diff in software engineering refers to the difference between two versions of a file, typically highlighting lines to be removed or replaced. Google's AlphaEvolve is not merely another code generator, but a system that generates and evolves code, allowing it to discover new algorithms. This innovation has already demonstrated its potential by shattering a 56-year-old record in matrix multiplication, a core component of many machine learning workloads. Additionally, AlphaEvolve has reclaimed 0.7% of compute capacity across Google's global data centers, showcasing its efficiency and cost-effectiveness. AlphaEvolve imagined as a genetic algorithm coupled to a large language model. Recommended read:
References :
erichs211@gmail.com (Eric@techradar.com
//
References:
analyticsindiamag.com
, AI News | VentureBeat
,
Google DeepMind CEO Demis Hassabis recently shared his vision of the future, where AI could revolutionize healthcare and potentially eradicate all diseases. In an interview on CBS’ 60 Minutes, Hassabis expressed optimism about the capabilities of DeepMind's AI systems, including Astra and Gemini. He highlighted how these advancements could lead to "radical abundance," particularly in areas like medicine. Hassabis believes that AI could drastically reduce the time and cost associated with drug discovery, potentially shrinking the design process of a new medicine from ten years to just months or even weeks.
DeepMind's Project Astra, a next-generation chatbot, was a key focus of the 60 Minutes segment. Astra can interpret the visual world in real time, identifying objects, inferring emotional states, and creating narratives. In one demonstration, Astra analyzed a painting, identified it, and then created a backstory to go along with the art work. Product manager Bibbo Shu emphasized Astra's unique design, highlighting its ability to "see, hear, and chat about anything," marking a significant step toward embodied AI systems and the rise of AI smart glasses. Gemini, DeepMind's AI system, is being trained not only to interpret the world but also to act within it, performing tasks like booking tickets and shopping online. Hassabis sees Gemini as a step toward achieving artificial general intelligence (AGI), an AI with human-like ability to navigate and operate in complex environments. While Hassabis acknowledges the potential risks of advanced AI, including misuse and the need for robust safety measures, he remains confident that these tools will enhance human endeavors and transform various sectors, particularly healthcare. Recommended read:
References :
|
BenchmarksBlogsResearch Tools |