News from the AI & ML world

DeeperML

Megan Crouse@techrepublic.com //
Researchers from DeepSeek and Tsinghua University have recently made significant advancements in AI reasoning capabilities. By combining Reinforcement Learning with a self-reflection mechanism, they have created AI models that can achieve a deeper understanding of problems and solutions without needing external supervision. This innovative approach is setting new standards for AI development, enabling models to reason, self-correct, and explore alternative solutions more effectively. The advancements showcase that outstanding performance and efficiency don’t require secrecy.

Researchers have implemented the Chain-of-Action-Thought (COAT) approach in these enhanced AI models. This method leverages special tokens such as "continue," "reflect," and "explore" to guide the model through distinct reasoning actions. This allows the AI to navigate complex reasoning tasks in a more structured and efficient manner. The models are trained in a two-stage process.

DeepSeek has also released papers expanding on reinforcement learning for LLM alignment. Building off prior work, they introduce Rejective Fine-Tuning (RFT) and Self-Principled Critique Tuning (SPCT). The first method, RFT, has a pre-trained model produce multiple responses and then evaluates and assigns reward scores to each response based on generated principles, helping the model refine its output. The second method, SPCT, uses reinforcement learning to improve the model’s ability to generate critiques and principles without human intervention, creating a feedback loop where the model learns to self-evaluate and improve its reasoning capabilities.
Original img attribution: https://assets.techrepublic.com/uploads/2025/04/exevutives-using-ai-computing-simulation-2025-02-19-12-48-22-utc-1.jpg
ImgSrc: assets.techrepu

Share: bluesky twitterx--v2 facebook--v1 threads


References :
  • hlfshell: DeepSeek released another cool paper expanding on reinforcement learning for LLM alignment. Building off of their prior work (which I talk about here), they introduce two new methods.
  • www.techrepublic.com: Researchers from DeepSeek and Tsinghua University say combining two techniques improves the answers the large language model creates with computer reasoning techniques.
Classification: