News from the AI & ML world

DeeperML

@sciencedaily.com //
Recent advancements in quantum computing research have yielded promising results. Researchers at the University of the Witwatersrand in Johannesburg, along with collaborators from Huzhou University in China, have discovered a method to shield quantum information from environmental disruptions, potentially leading to more reliable quantum technologies. This breakthrough involves manipulating quantum wave functions to preserve quantum information, which could enhance medical imaging, improve AI diagnostics, and strengthen data security by providing ultra-secure communication.

UK startup Phasecraft has announced a new algorithm, THRIFT, that improves the ability of quantum computers to model new materials and chemicals by a factor of 10. By optimizing quantum simulation, THRIFT enables scientists to model new materials and chemicals faster and more accurately, even on today’s slower machines. Furthermore, Oxford researchers have demonstrated a 25-nanosecond controlled-Z gate with 99.8% fidelity, combining high speed and accuracy in a simplified superconducting circuit. This achievement advances fault-tolerant quantum computing by improving raw gate performance without relying heavily on error correction or added hardware.
Original img attribution: https://www.sciencedaily.com/images/scidaily-icon.png
ImgSrc: www.sciencedail

Share: bluesky twitterx--v2 facebook--v1 threads


References :
  • The Quantum Insider: Oxford Researchers Demonstrate Fast, 99.8% Fidelity Two-Qubit Gate Using Simplified Circuit Design
  • www.sciencedaily.com: Researchers find a way to shield quantum information from 'noise'
Classification: